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ABSTRACT

In this paper three models of parallel speedup are studied. They are fixed-size speedup,

fixed-time speedup and memory-bounded speedup. The latter two consider the relationship

between speedup and problem scalability. Two sets of speedup formulations are derived

for these three models. One set considers uneven workload allocation and communication

overhead, and gives more accurate estimation. Another set considers a simplified case and

provides a clear picture on the impact of the sequential portion of an application on the

possible performance gain from parallel processing. The simplified fixed-size speedup is A m-

daM's law. The simplified fixed-time speedup is Gustafson's scaled speedup. The simplified

memory-bounded speedup contains both Amdahl's law and Gustafson's scaled speedup as

special cases. This study leads to a better understanding of parallel processing.
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1 Introduction

Although parallel processing has become a common approach for achieving high performance, there

is no well-established metric to measure the performance gain of parallel processing. The most

commonly used performance metric for parallel processing is speedup, which gives the performance

gain of parallel processing versus sequential processing. Traditionally, speedup is defined as the

ratio of uniprocessor execution time to execution time on a parallel processor. There are different

ways to define the metric "execution time". In fixed-size speedup, the amount of work to be executed

is independent of the number of processors. Based on this model, Ware [17] summarized Amdahl's

[1] arguments to define a speedup formula which is known as Amdahl's law. Itowever, in many

applications, the amount of work to be performed increases (as the number of processors increases)

in order to obtain a more accurate or better result. The concept of scaled speedup was proposed by

Gustafson et al. at Sandia National Laboratory [6]. Based on this concept, Gustafson suggested a

fized-time speedup [5], which fixes the execution time and is interested in how the problem size can

be scaled up. In scaled speedup, both sequential and parallel execution times are measured based

on the same amount of work defined by the scaled problem.

Both Amdahl's law and Gustafson's scaled speedup use a single parameter, the sequential

portion of a parallel algorithm, to characterize an application. They are simple and give much

insight into the potential degradation of parallelism as more processors become available. Amdahl's

law has a fixed problem size and is interested in how small the response time could be. It suggests

that massively parallel processing may not gain high speedup. Gustafson [5] approaches the problem

from another point of view. He fixes the response time and is interested in how large a problem

could be solved within this time. This paper further investigates the scalability of problems. While

Gustafson's scalable problems are constrained by the execution time, the capacity of main memory

is also a critical metric. For parallel computers, especially for distributed-memory multiprocessors,

the size of scalable problems is often determined by the memory available. Shortage of memory is

paid for in problem solution time (due to the I/O or message-passing delays) and in programmer

time (due to the additional coding required to multiplex the distributed memory) [3]. For many

applications, the amount of memory is an important constraint to scaling problem size [6, 10],

Thus, memory-bounded speedup is the major focus of this paper.

We first study three models of speedup: fi_ed-size speedup, fixed-time speedup, and memory-

bounded speedup. With both uneven workload allocation and communication overhead considered,

speedup formulations will be derived for all three models. When communication overhead is not

considered and the workload only consists of sequential and perfectly parallel portions, the simplified

fixed-size speedup is Amdahl's law; the simplified fixed-time speedup is Gustafson's scaled speedup;



and the simplified memory-bounded speedup contains both Amdahl's law and Gustafson's speedup

as special cases. Therefore, the three models of speedup, which represent different points of view,

are unified.

Based on the concept of scaled speedup, intensive research has been conducted in recent years

in the area of performance evaluation. Some other definitions of speedup have also been proposed,

such as generalized speedup, cost-related speedup, and superlinear speedup. Interested readers can

refer to [14, 9, 16, 7, 18, 2, 8] for details.

This paper is organized as follows. In Section 2 we introduce the program model and some

basic terminologies. More generalized speedup formulations for the three models of speedup are

presented in Section 3. Speedup formulations for simplified cases are studied in Section 4. The

influence of communication/memory tradeoff is studied in Section 5. Conclusions and comments

are given in Section 6.

2 A Model of Parallel Speedup

To measure different speedup metrics for scalable problems, the underlying machine is assumed to

be a scalable multiprocessor. A multiprocessor is considered scalable if, as the number of processors

increase, the memory capacity and network bandwidth also increase. Furthermore, all processors

are assumed to be homogeneous. Most distributed-memory multiprocessors and multicomputers,

such as commercial hypercube and mesh-connected computers, are scalable multiprocessors. Both

message-passing and shared-memory programming paradigms have been used in such multiproces-

sors. To simplify the discussion, our study assumes homogeneous distributed-memory architectures.

The parallelism in an application can be characterized in different ways for different purposes

[15]. For simplicity, speedup formulations generally use very few parameters and consider very high

level characterizations of the parallelism. We consider two main degradations of parallelism, uneven

allocation (load imbalance) and communication latency. The former degradation is application

dependent. The latter degradation depends on both the application and the parallel computer

under consideration. To obtain an accurate estimate, both degradations need to be considered.

Uneven allocation is measured by degree of parallelism.

Definition 1 The degree of parallelism of a program is an integer which indicates the maximum

number of processors that can be busy computing at a particular instant in time, given an unbounded

number of available processors.

The degree of parallelism is a function of time. By drawing the degree of parallelism over the

execution time of an application, a graph can be obtained. We refer to this graph as the parallelism



profile. Figure 1 is the parallelism profile of a hypothetical divide-and-conquer computation [13].

By accumulating the time spent at each degree of parallelism, the profile can be rearranged to form

the shape (see Figure 2) of the application [12].
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Figure 1. Parallelism profile of an application.

Let W be the amount of work of an application. Work can be defined as arithmetic operations,

instructions, or whatever is needed to complete the application. Formally, the speedup with N

processors and with the total amount of work W is defined as

SN(W)- TI(W)
TN(W)'

(t)

where Ti(W) is the time required to complete W amount of work on i processors. Let Wi be

the amount of work executed with degree of parallelism i, and let m be the maximum degree of

parallelism. Thus, W = _,m= 1 Wi. Assuming each computation takes a constant time to finish on

a given processor, the execution time for computing Wi with a single processor is

w_
tl(w_) = _,

where A is the computing capacity of each processor.

execution time is

w;
t_(w;) = _-_.

With an infinite number of processors available, the execution time will not be further decreased

and is

(2)

If there are i processors available, the
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Figure 2. Shape of the application.

forl <i<m.

Therefore, without considering communication latency, the execution times on a single processor

and on an infinite number of processors are

mw_
Ti(w)=F_, W,

i=1

m W i
T (W) :

i=l

number of processors, isThe maximum speedup, with work W and an infinite

(3)

(4)

m Wi

Sc_(VI/. ) _ TI(W ) Zi----, -Z- __ Z?----1 Wi

T_o(W) - Z_=a _ _im:l Wdi. (5)

Average parallelism is an important factor for speedup and efficiency. It has been carefully

examined in [4]. Average parallelism is equivalent to the maximum speedup Soo [4, 15]. Soo

gives the best possible speedup based on the inherent parallelism of an algorithm. There are no

machine dependent factors considered. With only a limited number of available processors altd

with communication latency considered, the speedup will be less than the best speedup, S_(W).

If there are N processors available and N < i, then some processors have to do w_x[_] work and

the rest of the processors will do _ [_J work. By the definition of degree of parallelism, 14,_ and

['i_ cannot be executed simultaneously for i # j. Thus, the elapsed time will be



w_ i

Hence,

and the speedup is

mw_ i
TN(W) = E _ZF_], (6)

i=1

SN(W) -- TI(W) _m= 1 Wi

TN(W)- Y27=__f_l (7)

Communication latency is another factor causing performance degradation. Unlike degree of

parallelism, communication latency is machine dependent. It depends on the communication net-

work topology, the routing scheme, the adopted switching technique, and the dynamics of the

network traffic. Let QN(W) be the communication overhead when N processors are used to com-

plete W amount of work. The actuai formulation for QN(W) is difficult to derive, as it is dependent

on the communication pattern and the message sizes of the algorithm itself, as well as the system-

dependent communication latency. Note that QN(VV) is encountered when there are N processors

(N > 1). Assuming that the degree of parallelism does not change due to communication overhad,

the speedup becomes

SN(W) -- T_(W) ZP=_ W_
TN(_V) - (Z_n=, w,-_.r_-l) + QN(W)" (8)

3 Speedup of Scaled Problems

In the last section we developed a general speedup formula and showed how the number of processors

and degradation parameters influence the performance. However, speedup is not dependent only

on these parameters. It is also dependent on how we view the problem. With different points

of view, we get different models of speedup and different speedup formulations. One viewpoint

emphasizes shortening the time it takes to solve a problem by parallel processing. With more and

more computation power available, the problem can, in principle, be solved in less and less time.

With more processors available, the system will provide a fast turnaround time and the user will

have a shorter waiting time. A speedup formulation based on this philosophy is called fixed-size

speedup. In the previous section, we implicitly adopted fixed-size speedup. Eq. (8) is the speedup

formula for fixed-size speedup. Fixed-size speedup is suitable for many algorithms in which the



problem size cannot be scaled.

For some applications we may have a time limitation, but we may not want to obtain the solution

in the shortest possible time. If we have more computation power, we may want to increase the

problem size, carry out more operations, and get a more accurate solution. Various finite difference

and finite element algorithms for the solution of Partial Differential Equations (PDE's) are typical

examples of such scalable problems.

An important issue in scalable problems is the identification of scalability constraints. One scal-

ablility constraint is to keep the execution time unchanged with respect to uniprocessor execution

time. This viewpoint leads to a different model of speedup, called fixed-time speedup. For fixed-time

speedup the workload is scaled up with the number of processors available. Let W' m'

the total amount of scaled work, where W" is the amount of scaled work executed with degree of par-

ailelism i, and m' be the maximum degree of parallelism of the scaled problem when N processors

are available. Note that the maximum degree of parallelism can change as the problem is scaled. In

order to keep the same turnaround time as the sequential version, the condition TI(W) = TN(W')

must be satisfied for W'. That is, the following scalable constraint must be satisfied,

m m'

F-,w' : W'[Nli: + QN(W'). (9)
i:1 /:1

Thus, the general speedup formula for fixed-time speedup is

_ Ei=l w; m,s v(w') - T,(W') m, w"
TN(W'-------) _-,_--'1 w_ - (10)+ QN(w') wi

In many parallel computers, the memory size plays an important role in performance. Many

large scale multiprocessors with local memory architecture do not support virtual memory due to

insufficient I/O network bandwidth. When solving an application with one processor, the problem

size is more often bounded by the memory limitation than by the execution time limitation. With

more processors available, instead of keeping the execution time fixed, we may want to meet the

memory size constraint. In other words, if you have adequate memory space and the scaled problem

meets the time limit imposed by fixed-time speedup, will you further increase the problem size to

yield an even better or more accurate solution? If the answer is yes, the appropriate model is

memory-bounded speedup. Like fixed-time speedup, memory-bounded speedup is a scaled speedup.

The problem size scales up with memory size. The difference is that in fixed-time speedup execution

time is the limiting factor and in memory-bounded speedup memory size is the limiting factor.

With memory size considered as a factor of performance, the requirements of an algorithm



consistof two parts. Oneis the computationrequirement,which is the workload,and the other

is the memory(capacity)requirement.For a givenalgorithm, thesetwo requirementsare related

to eachother, and the workloadmight beviewedasa function of the memoryrequirement.Let

M represent the memory size of each processor. Let g be a function such that W = g(M), or

M = g-a(W), where g-1 is the inverse function of g. An example of function g and g-1 can

be found in Section 5. In a homogeneous, scalable, parallel computer, the memory capacity on

each node is fixed and the total memory available increases linearly with the number of processors

available. If W = _=1 W/is the workload for execution on a single processor, the maximum scaled

workload with N processors, W* = _--'1 W/" must satisfy the following scalable constraint,

W* -= g(NM) = g(Ng-_(W)), (11)

where m* is the maximum degree of parallelism of the scaled problem and g is determined by

the algorithm. The memory limitation can be stated as: the memory requirement for any active

processor is less than or equal to M = g-l(_m=l Wi). Here the main point is that the memory

occupied on each processor is limited. By considering the communication overhead, Eq. (12) is the

general speedup formula for memory-bounded speedup.

W* "

Emj1 i IN] +QN(w')

(12)

4 Simplified Models of Speedup

The three general speedup formulations contain both uneven allocation and communication latency

degradations. They give better upper bounds on the performance of parallel applications. On

the other hand, these formulations are problem dependent and difficult to understand. They give

detailed information for each application, but lose the global view of possible performance gains. In

this section, we make some simplifying assumptions. We assume that the communication overhead

is negligible, i.e., QN = O, and the workload only contains two parts, a sequential part and a

perfectly parallel part. That is, Wi = O, for i ¢ 1 and i _ N. We also assume that the sequential

part is independent of the system size, i.e., W1 = W; = WI*.

Under this simplified case, the general fixed-size speedup formulation (Eq. 8) becomes

SN(W) -- Wl -{- WN (13)

W13v-._L"

Eq. (13) is known as Amdahl's law. Figure 3 shows that when the number of processors increases



the loadon each processor decreases. Eventually, the sequential part will dominate the performance

and the speedup is bounded by v¢ w_. In Figure 3, T1 is the execution time for the sequential

portion of the work, and TN is the execution time for the parallel portion of the work.

Amoun_
of

Work

Elapsed
Time

_w_ WlWl

'_rlfN V_rN _VN_¥ N _V_

1 2 3 4 5

Number of Processors (N)

T1

TN T1

TN

2 3 4 5

Number of Processors (N)

Figure 3. Amdahl's law.

For fixed-time speedup and under the simplified conditions, the scalability constraint (Eq. 9)

becomes

W1 + WN = W_ + W_v (14)
N"

Since W1 = W_, we have WN = wN--_-.That is W_ = NWN. Eq. (10) becomes

SN(W') -- W1 + NWN (15)
W_ + WN "

The simplified fixed-time speedup (Eq. 15) is known as Gustafson's scaled speedup [5]. From

Eq. (15) we can see that the parallel portion of an application scales up linearly with the system

size. The relation of workload and elapsed time for Gustafson's scaled speedup is depicted in Figure

4.

We need some preparation before deriving the simplified formulation for memory-bounded

speedup.

Definition 2 A function g is a semihomomorphism if there exists a function _ such that for any

real number c and any variable x , g(cx) = g(c)g(x).
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Figure 4. Gustafson's scaled speedup.

One class of semihomomorphisms is the power function g(x) = x b, where b is a rational number.

In this case, _ is the same as the function g. Another class of semihomomorphisms is the single

term polynomial g(x) = ax b, where a is a real constant and b is a rational number. For this kind

of semihomomorphism, g(x) = x b, which is not the same as g(x).

Under our assumptions, the sequential portion of the workload, 14q, is independent of the system

size. If the influence of memory on the sequentiM portion is not considered, i.e., the memory capacity

M is used for the parallel portion only, we have the following theorem.

Theorem 1 If W = g(M) for some semihomomorphism g, g(cx) = O(c)g(x), then, with all data

being accessible by all available processors and using all available memory space, the simplified

memory-bounded speedup is

SN(W,) = Wl --}- O(N)WN (16)

l'V1 + O_NWN

Proof: Assume that the maximum problem size will take the maximum available memory

capacity of M when one processor is used. As mentioned before, when one processor is available,

the parallel portion of the workload, WN, can be expressed as WN = g(M). Since all data are

accessible by all processors, there is no need to replicate the data. With N processors available,

the total available memory capacity will be increased to NM. The parallel portion of the problem



can be scaled up to use all available memory capacity NM. Thus, the scaled parallel portion, _V_,

is expressed as W_ = g(NM) = _(N)g(M). Therefore, W_ = _(N)WN and

w_* +w_-
SN(W*) = W_ + W_/N

W1 -4-O( N)WN

w_ + _-(ff-lwN
(17)

[]

Note that in Theorem 1, we made two assumptions in the simplified case: 1) Since the commu-

nication latency is ignored, remote memory accesses take the same time as local memory accesses.

This implies that the data is accessible by all available processors, and 2) All the available memory

space is used for a better solution. These simplified speedup models are useful to demonstrate how

the sequential portion of an application, W1, will affect the maximum speedup that can be achieved

with different number of processors. Let k = _. The simplified fixed-size speedup, fixed-time

speedup, and memory-bounded speedup are, respectively,

N

SN(W) = 1 + k(N - 1)' (18)

SN(W') = N - k(N - 1) = k + N(1 - k), and (19)

SN(W*) = N (O(N) + k(1- ._(N)) ) (20)
\O(i) + k(i - O(N))]

When the number of processors, N, goes to infinity, Eq. (18) is bounded by the reciprocal of

k, which gives the maximum value of the fixed-size speedup. Eq. (19) shows that the fixed-time

speedup is a linear function of the number of processors with slope equal to (1 - k). When N

goes to infinity, this speedup can increase without bound. Memory-bounded speedup depends on

the function _(N). When _(N) = 1, memory-bounded speedup is the same as fixed-size speedup.

When _(N) = N, the memory-bounded speedup is the same as the fixed-time speedup. In general,

the function _(N) is application dependent and .0(N) _> N. It implies that when the problem size

is increased by N, the amount of work increases more than N times. It is easy to verify that

SN(W*) > SN(W') when .0(N) > N. Note that all data in memory is likely to be accessed at least

once. Thus, for scaled problems, _(N) < N is unlikely to occur. The sequential portion of the

work plays different roles in the three definitions of speedup. In fixed-size speedup, the influence

of the sequential portion increases with system size and eventually dominates the performance. In

fixed-time speedup, the influence of the sequential portion is unchanged which makes the speedup

a linear function of system size. In the memory-bounded speedup, since in general _(N) > N,

the influence of the sequential portion is reduced when the system size increases, indicating that a

10



better speedupcouldbeachievedwith a largersystemsize.

Thefunction.0(N)providesa metric to evaluateparallelalgorithms.In general,.q(N) maynot

bederivablefor agivena.lgorithm.Notethat anysingleterm polynomialis a semihomomorphism,

andmostsolvablealgorithmshavepolynomialtime computationand memoryrequirement.If we

takeanalgorithm'scomputationandstoragecomplexity(the term with the largestpower)as its

computationandmemoryrequirement,for anyalgorithmwith polynomialcomplexitythereexistsa

semihomomorphismg, such that W = g(M). The approximated semihomomorphism g will provide

a good estimation on the memory-bounded speedup when the number of processors is large. More

detailed case studies for the three models of speedup can be found in [13].

Figure 5 demonstrates the difference between the three models of speedup when k = 0.3 and N

ranges from 1 to 1024. For the simplified memory-bounded (SMB) speedup, we choose .0(N) = N},

which is typical in many matrix operations to be described later. When _0(N) = N, it is Gustafson's

scaled speedup. The case of G(N) = (1 + _[1 - £_NN ])N will be studied in next section.

1000 _ I f I _.
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Amdahl s Law -'-- _ o "

800 SMB-g( N ) .... .z/ • "

600 . . " • o

Speedup _ ." _ooO °
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• 0 o

0 200 800 I000400 600
Number of Nodes

Figure 5. Amdahl's law, Gustafson's speedup, and SMB speedup for k = 0.3.

5 Communication-Memory Wradeoff

The simplified speedup formulations give the impact of the sequential portion of an application

on the maximum speedup. The simplified memory-bounded speedup suggests that when data are

shared by all processors, maximum speedup is obtained. However, in practice if communication

11



overheadis considered,the data sharingapproachmaynot lead to maximumspeedup.In the

designof efficientparallelalgorithms,the communicationcostplaysan important rolein deciding
how a problemshouldbe solvedand scaled.Oneway to reducethe frequencyof communication

is to replicatesomeshareddata to processors.Thus,a goodalgorithmdesignshouldconsiderthe

tradeoffbetweenthemaximumsizethat a problemcanscaleandthereductionof availablememory

dueto the replicationof shareddata.

If data replicationis allowed,the function W = 9(NM) will no longer hold. Motivated by

Theorem 1, the function G(N) = W[v/WN is defined to represent the ratio of work increment

when N processors are available. In terms of G(N), the simplified memory-bounded speedup is

generalized below.

Theorem 2 If W1 is independent of system size, Wi = 0 for 1 < i < N, and 14/iv = G( N)WN for

some function G(N), the memory-bounded speedup is

SN(_*) : VV1 + G(N)B_ (21)

w1 + a@wN + QN(w')

The proof of Theorem 2 is similar to the proof of Theorem 1. Eq. (21) shows that the maxi-

mum speedup is not necessarily achieved when G(N) = 0(N). Note that the communication cost

QN(W*) is a unified communication cost. An optimal choice of the function G(N) is both algo-

rithm and architecture dependent and, in general, is difficult to obtain. Also, unlike 0(N), G(N)

might be less than N. If G(N) < N, memory capacity is likely to be the scalable constraint when

N is large. If G(N) > N, execution time is likely to be the scalable constraint. The function G(N)

indicates the possible scalable constraint of an algorithm. The proposed scaled speedup (Eq. 21)

may not be easy to fully understand at first glance. Hence, we use matrix multiplication as an

example to illustrate it.

A matrix often represents some discretized continuum. Enlarging the matrix size will generally

lead to a more accurate solution for the continuum. For matrix multiplication C = AB, there are

many ways to partition the matrices A and B to allow parallel processing [11]. Assume that there

are N processors available, and A and B are n x n matrices when executing on a single processor.

The computation requirement is 2n 3 and the memory requirement is roughly 3n 2. Thus, WN = 2n 3

and M = 3n 2. Two extreme cases of memory-bounded scaled speedup are considered.

Local Computation

In the first case, we assume that the communication cost is extremely high. Thus, data should be

replicated if possible to reduce communication. This can be achieved by partitioning the columns

12



of matrix B into N submatrices, Bo,B1,...,BN-1 and replicating the matrix A. Thus, Bi's are

distributed among all the processors and matrix A is replicated on each processor. Processor i

does the multiplication ABi = Ci, i = 0,...,N - 1, independently. Since there is no need for

communication, it is referred to as local computation approach. Figure 6(a) shows the partitioning

of B for the case of N = 4.

A Bo B! B2 B3 Co CI C2 C3

(a) The matrix B is partitioned.

Ao

..............A;...............
A2

A3

Bo B1 B2 B3

I

I

CooiCol iC02i C03

........ _......... ; ........ ; ........

ClO!Cl11C121C13

........,_........ i........ i.........
C201C21 IC22iC23

I I -'

C301C31 iC321 C33
: i .

(b) Both matrices A and B are partitioned.

Figure 6. Two partitioning schemes of matrices A and B.

If both A and B are allowed to scale along any dimension and A and B are not necessary to be

square matrices, the enlarged problem is A'B* = C', where A* is an g x k matrix, B" is a k x m

matrix, and the resulting matrix C* is an g x m matrix. Note that the local memory capacity

is M = 3n 2. It is easy to see that the maximum memory-bound speedup will be achieved when

= k = n, and m = nN. In other words, both B and C are scaled up N times along their rows, and

A is replicated but not scaled. The amount of computation on each processor is fixed, 14ZN= 2n 3,

and W[v = NWN. Thus, we have G(N) = N. The memory-bounded scaled speedup is

SN(W')-
W1 + NWN

W1 + WN

which is Gustafson's scaled speedup. Thus, the best performance of memory-bounded speedup

using the local computation model is the same as the Gustafson's scaled speedup. In general, the

local computation model will lead to a speedup that is less than Gustafson's scaled speedup. For

example, if both A and B are restricted to square matrices, the function G(N) will be

13



C(N) =

which is less than N, for N > 1, and is bounded by 3_ (see Appendix). Note that due to data

replication, the memory capacity requirement increases faster than the computation requirement

does.

Global Computation

In the second extreme case, we assume that the communication cost is negligible. Thus, there is

no need to replicate the data. A bigger problem can be solved. We partition matrix A into N row

blocks and B into N column blocks (See Figure 6(b)). By assigning each pair of submatrices, Ai and

Bi, to one processor initially, all main diagonal blocks of C can be computed. Then, the row blocks

of A are rotated from one processor to another after each row-column submatrix multiplication.

With N processors, N - 1 rotations are needed to finish the computation as shown in Figure 7 for

the case of N = 4. This method is referred to as global computation.

For the global computation approach, the maximum scaled speedup is achieved when g = k =

m = nx/rN (see Appendix).

WI -I- N _ WN
SN(W*) : . (22)

WI + N½WN

The corresponding function G(N) = N_. Assuming N <_ n 2, we can write WN as a function of M

as follows,
3

WN = g(M)= (23)

Increasing the total memory capacity to NM, we have

3 3

_V_7 = -- N{ = N_WN -= {?(N)WN. (24)

The matrix multiplication problem has a semihomomorphism between its memory requirement and

computation requirement and 0(N) = N_. Assuming a negligible communication cost, the global

computation approach will achieve the best possible scaled speedup of the matrix multiplication

problem.

We have studied two extreme cases of memory-bounded scaled speedup which are based on

global computation and locaJ computation. In general for most of the algorithms, part of the data

14



(a) step 1

(b) step 2

(c) step 3

(d) step 4

Figure 7. Matrix multiplication without data replication.
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maybe replicatedandpart of the datamayhaveto beshared.Derivinga speedupformulationfor

thesealgorithmsis difficult, not only becausewearefacinga morecomplicatedsituation,but also

becausethe ratio betweenreplicatedandshareddata is uncertain. The replicatedpart maynot

increaseasthe systemsizeis increased.In casethereplicatedpart doesincrease,its speedofincrease

maybedifferentfrom thespeedthat thesharedpart is increased.Also,analgorithmmaystartwith

globalcomputation.Whenthe systemsizeis increased,replicationmaybe neededaspart of the

effort to reducecommunicationoverhead.A specialcombinedcase,G(N) = (1 + _[1 - N ])N,

has been carefully studied in [15]. The structure of that study can be used as a guideline for other

algorithms.

The influence of communication overhead on the best performance of the memory-bounded

speedup is studied. The study can be extended to fixed-time speedup, where redundant computa-

tion could be introduced to reduce the communication overhead. The function G(N) determines

the actual achieved speedup. We have shown how the partition and scale of the problem will influ-

ence the function G(N). In general, finding an optimal function G(N) is a non-linear optimization

problem. The concept of the function G(N) can be extended to algorithms with multi-degree of

parallelism.

6 Conclusions

It is known that the performance of parallel processing is influenced by the inherent parallelism

and communication requirement of the algorithm, by the computation and communication power

of the underlying architecture, and by the memory capacity of the parallel computer system. How-

ever, how are these factors related to each other, and how do they influence the performance of

parallel processing is generally unknown. Discovering the answers to these unknowns is important

for designing efficient parallel algorithms. In this paper one model of speedup, memory-bounded

speedup, is carefully studied. The model contains these factors as its parameters.

As part of the study on performance, two other models of speedup have also been studied.

They are fixed-size speedup and fixed-time speedup. Two sets of speedup formulations have been

derived for these two models of speedup and for memory-bounded speedup. Formulations in the

first set give rise to generalized speedup formulas. The second set of formulations only considers a

special, simplified case. The simplified fixed-size speedup is Amdahl's law, the simplified fixed-time

speedup is Gustafson's scaled speedup, and the simplified memory-bounded speedup contains both

Amdahl's law and Gustafson's scaled speedup as special cases.

The three models of speedup, fixed-size speedup, fixed-time speedup and memory-bounded

16



speedup, are based on different viewpoints and are suitable for different classes of algorithms. Ilow-

ever, algorithms exist which do not fit any of tile models of speedup, but satisfy some combination

of the models.

Appendix

When communication does not occur (local computation) or its cost is negligible, the memory-

bounded speedup equation (21)becomes

+ G(N)WN
S} = (25)

W, + _ WN "

It is easy to verify that S_v increases with the function G(N). Thus, for the two extreme cases

considered in Section 5, the problem of how to reach the maximum speedup becomes how to scale

the matrix A and B such that the function G(N) reaches its maximum value. The matrix A and

B can be scaled in any dimension. A general scaled matrix multiplication problem is

Al.kBk,,m = Cl.m,

where both A and B are rectangular matrices. To achieve an optimal speedup, we need to decide

the integers l, k, and rn, for which that the function G(N) reaches the maximum value. The

following result gives the optimal l, k, and m for the global computation approach (Fig. 6(b))

given in Section 5. Recall that N is the number of processors.

Proposition 1 ff A and B are n x n matrices when N = 1, then the global computation approach

reaches the maximum G(N) when l = k = n and m = n x v/N, excluding the communication cost.

The corresponding G( N) equals N 3/2, and the maximum speedup is

I'V1 + Na/2II'_V

S_, = _'V1Jr- N1/2I'VN" (26)

Proof: By the partition schema of the global computation approach, the rows of matrix A

and the columns of matrix B are distributed among processors. The workload on each processor is

Since the memory is fully filled,

A t .Bk.-, _ _=

1 TFt 1 ?_
--,k+k* + -- * -- = 3rt 2.
N Y N N
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Thus,

The workof the scaledproblemis

k

m3n 2 _ ,
l m

N +--

W_V = 2,l,m*k=2,l,m, 3n2N - l, m]

2n31*man2N-l*m (3n2-N-l*m)(l*m)WN.
n _ l + m (l + m) • n 3

(27)

G(N) = (3n2 - N - l • rn)(l * m)
(l + m) * n 3

Therefore, G(N) reaches its maximum value if and only if the function

f(l,m) = (3n2 -- N - 1 • m)(t • m)
l+m

reaches its maximum value. At its maximum value, the derivatives of f(l, m) satisfy

(28)

f; = -l_m _ - 21m 2 + 3n2m2N = 0,

fm = -12m 2 - 2ml 2 + 3n2m2N = O.

It leads to

12+21m-3n2N =0, (29)

This is

m 2 + 21m- 3n2N = O. (30)

(l + m) 2 = m 2 + 3n2N.

(m +/)2 = 12 + 3n2N.

Thus, we have m 2 = l 2, i.e.

18



l= re (31)

Combining the Eq. (31) and Eq. (29), we get

l=rn=nv/-N.

From the Eq. (27), we have k = nv/-N. Thus, the enlarged A and B are still square matrices, with

dimension nv'_. By Eq. (28) the maximum G(N) is

c(N) = (nVrY) (3n  V - (nv/'Y)2) =
n3(env N)

which is equal to the memory-work function _(N) for the matrix multiplication problem (see Section

5), and the corresponding speedup is

From Theorem 1

W1 + N3/2WN

STy = W1 + N1/_WN"

, it is the best possible performance for the matrix multiplication problem. []

Using similar arguments as in Proposition 1, we can find that the optimal dimension of the local

computation approach is 1 = k = n, m = nN, and the maximum value of G(N) is N (see Section

5). The scalability of matrix A and B is application dependent. If A and B should be maintained as

square matrices, the following proposition shows the limitation of the local computation approach.

Proposition 2 If A and B are n x n matrices when N = 1, and l = k = re is required, then the

maximum value of G( N) of the local computation approach is , which is bounded by 37

and is smaller than N, for N > 1.

Proofi When A and B are square matrices, the scaled problem is

Ak.kBk.k = Ck.k.

If the load is balanced on each processor, and m = -_ is an integer, then each processor does the

work

Ak_,kBk.m = Ck*ra.
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Whenmemoryis fully used,

k 2 A- 2k * m = 3n 2.

Since m -- -_,

Thus,

The scaled work

2k 2
k _ + --_ = 3n 2.

k= -

W_ =2k 3= (_/N+2] 2n3= 3N

3

WN,

and 3

Since
3N 3N + 6 6 6

N+2 N+2 N+2 N+2

and
3N 3

N+2 N+2
× N,

3

the G(N) is bounded by 3_ and is smaller than N, for N > 1.
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